

1990-2016

1993-2016

2017

$\overline{\Lambda}$ I	Certification –	Meeting	with Amberg	Linging AC	,

Client

Location

Design Level

Design Costs

29.8.2017

Total Project Costs

Design Joint Venture

Project Phases & Design Schedule

Alp Transit AG (ATG)

Switzerland

AG

Design

Construction

Commissioning

12.2 billion CHF

Project Main Information

All design stages up to detailed design

485 Mio. CHF (part of AE: 165 Mio. CHF)

JV with Pöyry Infra AG and Lombardi SA under lead of Amberg Engineering

, ,,	Lit Gordinoadon	Westing With Amberg Engineering / Ce	

Design Responsibilities

Amberg within JV, responsible for the whole tunnel itself

Amberg within JV, responsible for the whole tunnel itself

Amberg within JV, mainly Faido but also Bodio and Sedrun

Amberg within JV, responsible for Bodio, Faido and partially Sedrun

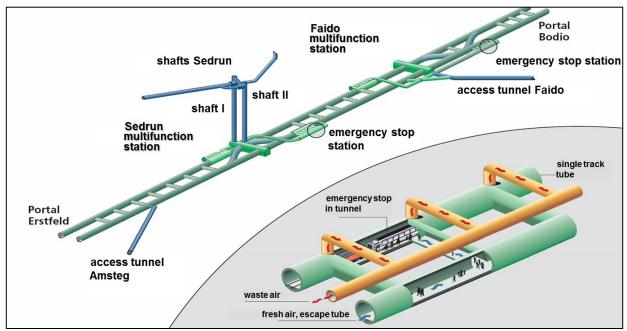
Amberg within JV, responsible for the Faido section

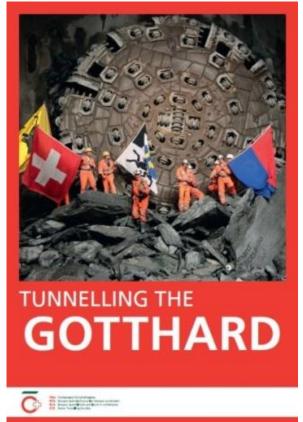
Amberg within JV, responsible for the Faido section

Preliminary Design

Basic Design

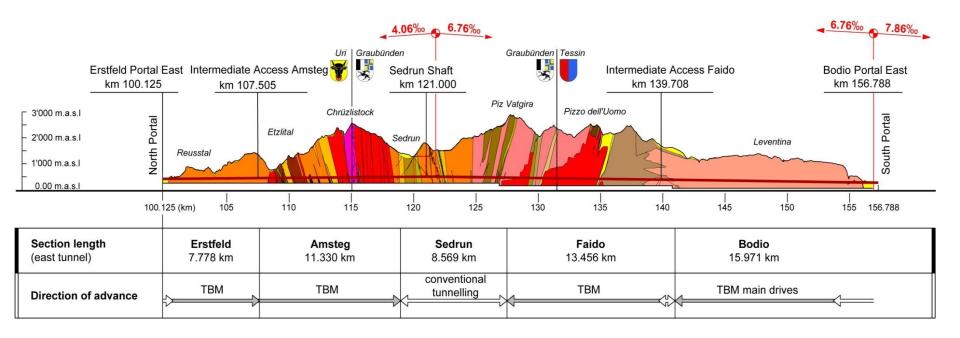
Detailed Design


Tender Design


Assistance on Site

Site Supervision

29 8 2017


Gotthard Base Tunnel, www.alptransit.ch

Excavation method

TBM

- 4 Herrenknecht TBM
- Open gripper shield
- Length

TBM: 26 m Back-up: 450 m

Cutter head

Diameter: 9.43 m Shifted, max: 9.53 m Weight: 240 t

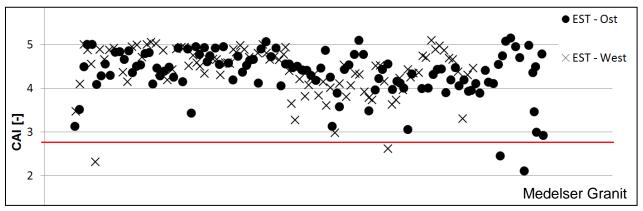
Discs:

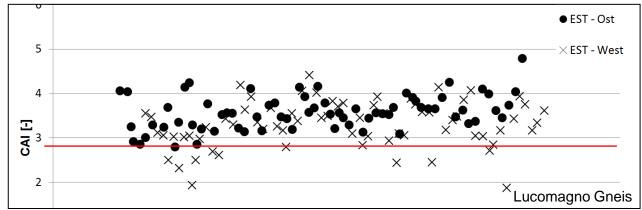
Number: 66 Diameter: 17"

Experience Faido

- Cutter head wear
- Water inflow
- Rock burst
- Squeezing rock
- Blocked TBM
- Excavation rates

Cutter head wear I


Abrasivity with Cherchar index

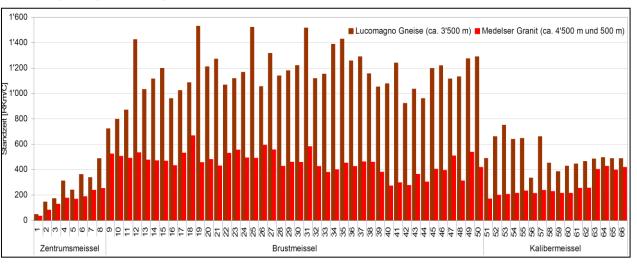

Tender design: CAI 2.8

Medelser Granite CAI 4.4

Lucomagno Gneiss CAI 3.4

Cutter head wear II

- Instable face
- Not all discs at face
- Reduced face pressure
- Reduced cutting speed
- Blocks at the face
- Cutter head as crusher
- Rolling blocks hits the disks



Cutter head wear III

- CAI much higher than prognosis
- Damaged Disks due to blocks
- Often longer maintenance shifts
- Reduced pressure due to instable face
- Determinating for advance rate

AFER Certification – Meeting with Amberg Engineering AG

TBM Drives at the Gotthard Base Tunnel

Water inflow I

- Water pressure up to 200 bar
- Probe drillings require preventer (in sensitive areas)
- Needs specification in tender docs
- 1:1 tests on site recommended before start
- Works well for both percussion and core drillings

Water inflow II

- Water inflow initial max 100 l/s
- Ascending tunnel
- 600 mm drainage pipe
- No problem
- But 48°C!
- Cooling system limited
- Reduced working hours
- Frequent pauses required
- Reduced advance rate

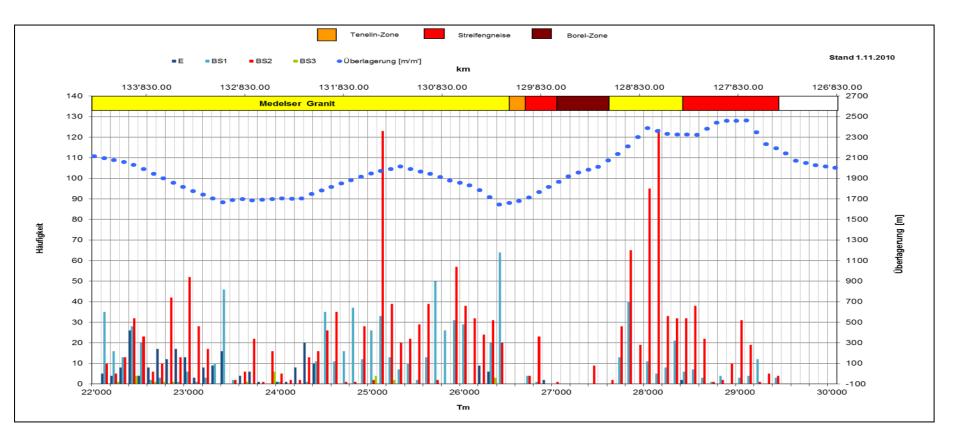
Rock burst I

AFER Certification – Meeting with Amberg Engineering AG

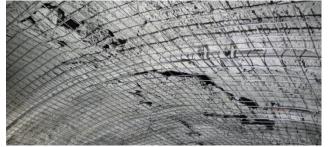
TBM Drives at the Gotthard Base Tunnel

Rock burst II

- Difficult to predict
- Without warning suddenly!
- Rock support cannot prevent rock burst
- But must protect staff TBM helps!
- Absorb kinetic energy
- Not easy to classify, subjective
- Code of classification
- Potential measures



Begriff (Ereignis)	Beobachtete Phänomene	Massnahmen			
E Entlastung	Geräuschvolle Entlastung, leichtes Abbröckeln: Knistern, Schläge und	 Schichtführer und Vortriebsbauleiter informieren. 			
	Knackgeräusche im Gebirge	 Sicherung konsequent zum Fingerschild nachziehen 			
		- Beobachtungen dokumentieren auf Tagesrapport TAT und SISOBL			
BS1	Spannungsbedingtes Abblättern ohne	Zusätzlich zu E:			
Leichter Bergschlag	Gesteinsablösung: Gestein zerbricht mit einem Schlag, Schuppenbildung bis 5 cm Stärke, Bildung von Staubwolken	Überprüfen der Verankerung (Typ, Länge, Anzahl, Raster, Ankerplatte) sowie Einsatz und Abstand der Teilbogen. Prüfen Einsatz nachgiebiges Ankersystem (Freispiel-Swellex).			
		- Prüfen oder Anpassen der Hublänge			
BS2 Mittlerer Bergschlag	Spannungsbedingte Ablösung oder Niederbruch an Tunnelleibung oder Brust im ungesicherten Bereich: Gestein zerbricht grob und geräuschvoll. Ev. Brustablösungen vor dem Bohrkopf mit möglicher Störung des Vorschubes.	Zusätzlich zu B1: Verstärken der Ausbruchsicherung - Einbau nachgiebiges Ankersystem - Einbau super Swellex - Einbau Netze auf ganzem Umfang - Einsatz von Spritzbeton im L1* - Einsatz Stahlbogen TH			
BS 3 Starker Bergschlag	Starker Knall mit Felsabsprengung: Gesteinssplitter oder -platten werden plötzlich in radiale Richtung mit lautem Knall ab der Tunnelleibung geschleudert (im gesicherten und ungesicherten Bereich). Die Sicherung wird möglicherweise beschädigt (Spritzbeton gerissen, abgerissene Anker, verformte Bögen).	Zusätzlich zu B2: - Anpassung Hublänge - Einbau TH-Bogen im Abstand 1 m in Kombination mit Ankern - Prüfen von Entspannungsbohrungen			

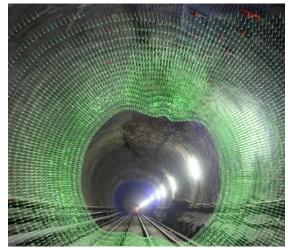


Squeezing rock I

- Started with Steel arches and rock bolts and shotcrete
- Soon deformations (30 cm)
- Shotcrete destroyed
- Steel arches plastified

Squeezing rock II

- Second TBM even worse
- Back up was squeezed in
- Heave in the invert
- Reconstruction of the invert still under the TBM



AFER Certification – Meeting with Amberg Engineering AG

TBM Drives at the Gotthard Base Tunnel

Squeezing rock III

- TBM got through at the end
- Intensive back calculations
- New loads, new design
- Tunnel redone on 400 m

Squeezing rock IV

- D&B in this area had less problems
- Rock support can be installed direct at the front, with TBM not possible
- Distance between face and installed rock support is important
- > Shield must be as short as possible
- Styrofoam elements worked well to protect young shotcrete
- Inclined cross passages allowed to redo the tunnels without interrupting the TBM

AFER Certification – Meeting with Amberg Engineering AG

Blocked TBM I

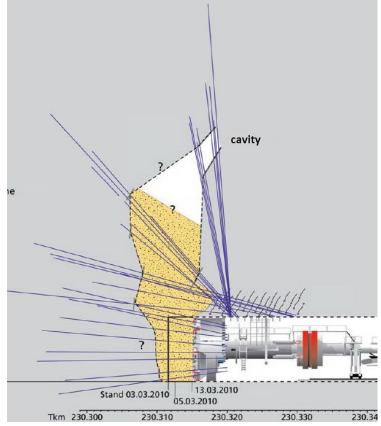
- First machine passed
- Some over brake
- Second machine got stocked
- Several attempts with backing and restart were not successful
- 1'100 m spiles installed
- Voids filled up with 48 m³ concrete and 47 m³ grout

TBM Drives at the Gotthard Base Tunnel

AFER Certification – Meeting with Amberg Engineering AG

Blocked TBM II

- Still not successful
- A lot of material was taken out without any progress
- Massive cavern above tunnel
- Extensive probe drilling



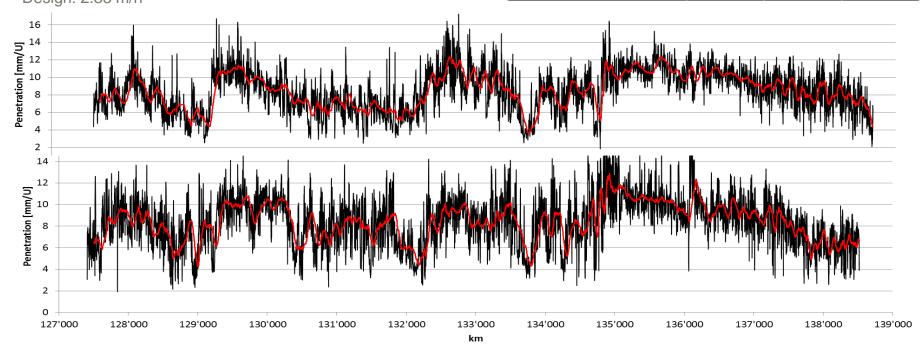
TBM Drives at the Gotthard Base Tunnel

Blocked TBM III


- Stabilize loos material
- Grouting campaign from a niche, east tunnel
- Counter heading to secure the time schedule

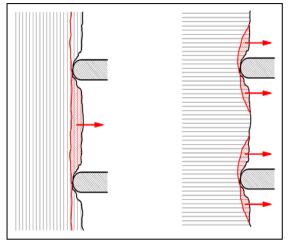
Blocked TBM IV

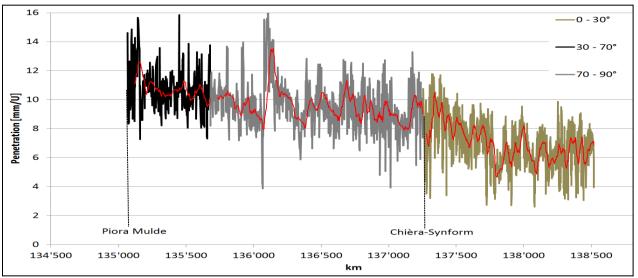
- Action plan was very helpful, reduced reaction time significantly
- Expert panel was important
- Close collaboration and clear communication was crucial
- Decision need to be taken fast, immediately at the face
- Willingness to solve the problem compulsory



Advance rates I

Design: 2.33 m/h


		Ost	West
Penetration	mm/U	8.28	8.46
Netto advance rate	m/h	2.51	2.64



Advance rates II

- Joint and foliation angle important influence
- Penetration around 10 mm while perpendicular
- Drops down to 70% while flat

Advance rates III

		Länge	Beainn	Ende Finish	Vortriebs- tage Driving days	Stillstandstage Standstill days	Ausführung / Site		Planung / Design	
Teilabschnitt Section	Röhre <i>Tunnel</i>	Length [m]					[m/VT] [<i>m/DD</i>]	[m/KT] [<i>m/D</i>]	[m/KT] [m/D]	Vergleich Comparison
Erstfeld	Ost	7150	04.12.2007	16.06.2009	392	168	18.24	12.77	10.85	118 %
cistieia	West	7116	16.03.2008	16.09.2009	400	149	17.79	12.96	10.85	119 %
Amstag	Ost	10.723	22.05.2003	05.06.2006	749	361	14.32	9.66	7.44	130 %
Amsteg	West	10.703	08.08.2003	09.10.2006	676	482	15.83	9.24		124 %
Faida	Ost	11.134	07.07.2007	15.10.2010	910	286	12.24	9.31	0.00	105 %
Faido	West	11.088	15.10.2007	23.03.2011	894	361	12.40	8.84	8.89	99 %
Bodio	Ost	13.450	01.11.2002	06.09.2006	1149	256	11.71	9.57	12 21	78 %
DOUIO	West	14.113	01.02.2003	26.10.2006	1114	249	12.67	10.35	12.21	85 %

Lessons learned I

- Optimize TBM for most probable geology – set right focus
- Make sure, that TBM can handle worst case
- Open gripper TBM was right decision flexibility was needed
- Shotcrete in L1 was necessary and feasible, main shotcrete in L2
- Rock bolts in L2 were not used.
 Bolts are needed as close to the face as possible

Lessons learned II

- A continuous probe drilling from the TBM was very useful (low cost, no time)
- In such difficult geology it is inevitable to have competent staff on site (contractor, designer bust also client)
- Decisions need to be taken fast, to keep TBM running
- Logistic is important. Keep other activities as low as possible
- TBM produces a lot of data. Data evaluation needs a clear concept to get significant results

